质子是一种会出现在每个原子中心的带正电荷的粒子,它是原子核的组成部分,占宇宙可见物质的99%以上。质子也是自然界中唯一稳定的复合基础构件。可以这么说,深入了解这种粒子和它的结构,将对所有物理学领域带来深远的影响。
然而,核物理学家已经证实,目前对质子结构描述的进展并不是一帆风顺。
托马斯·杰斐逊国家加速器设施针对质子的电极化率进行的一项新的精确测量显示,在探测质子结构的数据中存在一个异常的凸起。尽管在早期的测量中已经看到了这一现象,但当时普遍认为那是一种统计上的偏差。然而,近期更精确的测量却再次证实了这种异常现象的存在,并提出了关于它的来源的关键问题。研究论文已发表在《自然》上。
复杂的内部
我们可能经常会看到这样一幅示意图,它描绘了质子内部的基本构成,也就是三个夸克。
常见的质子内部结构简化示意图。(图/原理)
当然,这极大地简化了实际情况。事实上,质子内部的夸克被强相互作用束缚,量子色动力学(QCD)理论描述了这种相互作用是如何以胶子作为媒介的,这个过程类似于量子电动力学(QED)中光子介导了电磁相互作用的方式。
质子内部实际上相当复杂,胶子将夸克紧紧束缚在一起,而胶子和被束缚的粒子之间同样会产生相互作用,此外,它的内部还可能短暂出现又随即消失的夸克-反夸克对。(图/原理)
但与光子不同的是,胶子与它们束缚的粒子之间同样会产生相互作用。这就让计算的难度陡增,并且常常让直接的QCD碰撞预测超出现有算力的范畴。
因此,研究人员通常需要依赖近似的方法,其中之一就被称为手性有效场论。根据手性有效场论,他们可以推测出质子许多可能的行为模式和属性。
测量极化率
与尺寸或电荷一样,电极化率也是质子结构的一项基本属性。对质子的电极化率的测量,揭示了质子在电场中对变形或拉伸的敏感程度。
更重要的是,对质子电极化率的精确测定,可以帮助弥合对质子的不同描述。我们还是把质子想象成一个模型,中间是三个平衡的夸克。现在,将它放进电场中。夸克带有正电或负电,它们会向相反的方向移动。因此,电极化率能反映质子有多容易被电场扭曲。这也就能帮助我们探测质子的次级结构。
为了探测这种扭曲,核物理学家使用了一种叫作虚拟康普顿散射的过程。在虚拟康普顿散射中,电子通过发射一个高能光子(光的粒子)而与其他粒子产生相互作用。电子的能量决定了它所发射的光子的能量,这也决定了光子如何与其他粒子相互作用。
在虚拟康普顿散射反应中产生的真实光子,为质子带来了电磁扰动,从而让科学家测量质子的电磁广义极化率。(图/Nikos Sparveris, Temple University)
能量较低的光子可能会从质子的表面反弹回去,而能量较高的光子则会在质子内部爆炸,与质子的一个夸克发生相互作用。理论预测,随着越来越深入原子,电极化率应该越小,因为结构会变得越“硬”。当这些光子-夸克相互作用按照从低能量到高能量被绘制出来时,它们将形成一条平滑的曲线。
早在2000年,一组研究人员已经利用电子和液氢之间碰撞产生的虚拟光子的康普顿散射来测量质子的电磁广义极化率。如果质子具有那种传统结构,这项测量结果似乎与手性有效场论所预测的散射模式并不一致。但它带有很大的不确定性,很多人对这一结果仍有所保留。
这项新的研究以更高的精度重复了康普顿散射实验。它始于杰斐逊实验室的连续电子束加速器设施的一束精心控制的高能电子束。这些电子被送入质子中碰撞。
然而,那种简单的图景似乎真的经不起推敲。测量结果同样发现了一个尚未被解释的凸起。科学家真正看到的是,极化率的大小出现了一些局部增强。正如预期的那样,随着能量的增加,极化率会下降。而且,在某个时候,在它即将下降之前,它似乎又短暂地上升了。
和先前的实验相比,新的实验中这个凸起要小一些。但总的说来,实验所得的结果好像的确偏离了那种理论预测的简单行为。而这就是目前最让科学家感到困惑的事实。
未知的因素
仍有一些物理学家对这一结果持怀疑态度,显然,还需要更多高精度的实验,进一步弄清这种异常现象的细节。
如果这种异常最终被证实,这或许告诉我们,强力的一个未知方面可能在起作用,而目前的理论在这一点上显然少了一些东西。研究人员相信,更多理论见解或许很快就会出现。
研究人员下一步计划是继续更精密探测,检查其他的偏差点,并提供更多关于异常现象来源的信息。这对于进一步阐明理论相当重要。
第2章02他的关切那么真,和记忆里那个在小巷里救了我的少年重叠在一起。"把她安顿好了?"我的声音不高,却让空气瞬间安静了。周成烨脸上的笑容僵住,手不自然的收回。"繁繁,我知道婚
2025-08-29 03:53:25我将半生心血,铸成锦绣江山,悉数捧到养子面前,待他真如亲子。换来的,却是精心策划的车祸,与长达半年的冰冷昏迷。养子江弈,我亲手教养长大的狼崽,正穿着我为他定制的西装,对全世界宣
2025-08-29 03:41:31深圳租房遇到的奇葩房东描绘了张明轩林浩小雨的一段异世界冒险之旅。他身世神秘,被认为是命运的守护者。皇阿玛巧妙地刻画了每个角色的性格和动机,小说中充满了紧张、悬疑和奇
2025-08-29 03:28:326再次睁开眼,顾诗雨已经躺在了医院的病床上。一旁,段宁川的助理见她醒来,没等她反应,迅速将顾诗雨带到了城东她母亲的墓前。望着墓碑前站着的众人,她有些疑惑,一种不详的预感慢慢
2025-08-29 03:16:13第二天早上,谢紫雨一大早就被春兰给喊起来了。今日是她们入宫的第二天,按照规矩,新入宫的嫔妃应该去坤宁宫拜见皇后。虽然如今宫中无后,但是她们还是要去两宫太后宫里露个脸的。
2025-08-29 03:04:25在谢谢xxx的笔下,苏清雅林怀书韩逸轩成为了一名被注定要与命运抗争的英雄。他面对着一个陌生而危险的世界,需要勇气和智慧来战胜邪恶势力。这部短篇言情小说融合了冒险、奇幻
2025-08-29 02:51:37洛佳琪楚天阔小马作为现代言情小说《被沪少欺负后,首长为我撑腰 》中的主人公圈粉无数,很多网友沉浸在作者“ 云上火 ”独家创作的精彩剧情中,详情为:看我这次从沪市
2025-08-29 02:38:33接下来的几天,两个人没再遇见。陆凛一如既往的忙碌。城市火灾安全教育宣传越来越受重视,火情报警不多,更多的是意外险情。什么某个人手夹在了缝隙中,某个人掉进了虚晃的下水井里
2025-08-29 02:24:40